\(\text { power generated }=\frac{\mathrm{N}}{\mathrm{t}} \mathrm{Q}\)
\(\text { where, } \mathrm{N} \rightarrow \text { No. of reaction/sec. }\)
\(\mathrm{Q}=\left(3 \mathrm{~m}_{\mathrm{He}}-\mathrm{m}_{\mathrm{C}}\right) \mathrm{C}^2\)
\(\mathrm{Q}=(3 \times 4.0026-12)\left(3 \times 10^5\right)^2\)
\(\mathrm{Q}=7.266 \mathrm{MeV}\)
\(\frac{\mathrm{N}}{\mathrm{t}}=\frac{\text { power }}{\mathrm{Q}}=\frac{5.808 \times 10^{30}}{7.266 \times 10^6 \times 1.6 \times 10^{-19}}\)
\(\frac{\mathrm{N}}{\mathrm{t}}=5 \times 10^{42}\)
rate of conversion of \({ }^4 \mathrm{He}\) into \({ }^{12} \mathrm{C}=15 \times 10^{42}\)
Hence, \(n=15\)
$X \stackrel{a}{\longrightarrow} Y$
$Y \underset{2 \beta}{\longrightarrow} Z$
, ત્યારે
આપેલ ન્યૂક્લિયર પ્રક્રિયામાં, મુક્ત થતી ઊર્જાનું અંદાજિત (સંનિકટ) મૂલ્ય $..........\,MeV$ હશે.
${ }_{92}^{238} A=$ નું દળ $238.05079 \times 931.5\,MeV / c ^2$
${ }_{90}^{234} B =$ નું દળ $234.04363 \times 931.5\,MeV / c ^2$
${ }_2^4 D =$ નું દળ $4.00260 \times 931.5\,MeV / c ^2$ આપેલ છે.