\(R_{t}=R_{0}(1+\alpha t)\)
where \(R_{t}\) is the resistance of the wire at \(t\,^{o} \mathrm{C}\)
\(R_{0}\) is the resistance of the wire at \(0\,^{o} \mathrm{C}\)
and \(\alpha\) is the temperature coefficient of resistance.
\(\Rightarrow R_{50}=R_{0}(1+50 \alpha)\) ......\((i)\)
\(R_{100}=R_{0}(1+100 \alpha)\) .......\((ii)\)
From \((i),\) \(R_{50}-R_{0}=50 \alpha R_{0}\) .....\((iii)\)
From \((ii),\) \(R_{100}-R_{0}=100 \alpha R_{0}\) ....\((iv)\)
Dividing \((iii)\) by \((iv),\) we get
\(\frac{R_{50}-R_{0}}{R_{100}-R_{0}}=\frac{1}{2}\)
Here, \(R_{50}=5\, \Omega\) and \(R_{100}=6\, \Omega\)
\(\therefore \frac{5-R_{0}}{6-R_{0}}=\frac{1}{2}\)
or, \(6-R_{0}=10-2 R_{0}\) or, \(R_{0}=4\, \Omega\)