\(\mathrm{a}=\mathrm{g} \sin \theta\)
\(\ell=\frac{1}{2} \mathrm{at}^2 \Rightarrow \mathrm{t}=\sqrt{\frac{2 \ell}{\mathrm{g} \sin \theta}}\)
For rolling
\(\mathrm{a}^{\prime}=\frac{\mathrm{g} \sin \theta}{1+\frac{\mathrm{k}^2}{\mathrm{R}^2}}\left[\mathrm{k}=\frac{\mathrm{R}}{\sqrt{2}}\right]\)
\(\Rightarrow \mathrm{a}^{\prime}=\frac{2 \mathrm{~g} \sin \theta}{3}\)
\(\ell=\frac{1}{2} \mathrm{a}^{\prime}\left(\mathrm{t}^{\prime}\right)^2\)
\(\Rightarrow \mathrm{t}^{\prime}=\sqrt{\frac{6 \ell}{2 \mathrm{~g} \sin \theta}}=\sqrt{\frac{\alpha}{2}} \sqrt{\frac{2 \ell}{\mathrm{s} \sin \theta}}\)
\(\Rightarrow \alpha=3 \)