અહીં,\(E_{2n}\) - \(E_1\) = \(204 eV\) (વધુમાં વધુ) આપેલ છે.
\(\therefore\) \(\,\frac{{{{\text{E}}_{\text{1}}}}}{{{{\left( {2n} \right)}^2}}}\,\, - \,\,{E_1}\,\, = \,\,104\,\,eV\,\)
\(\therefore\) \({E_1}\,\,\left( {\frac{1}{{4{n^2}}}\,\, - \,\,1} \right)\,\, = \,\,204\,\,eV\,\,.......\left( 1 \right)\)
અહી ,\({E_{2n}}\,\, - \,\,{E_n}\,\, = \,\,40.8\,\,eV\,\) આપેલ છે
\(\therefore\) \(\frac{{{E_1}}}{{4\,\,{n^2}}}\,\, - \,\,\frac{{{E_1}}}{{{n^2}}}\,\, = \,\,40.8\,\,eV\)
\(\therefore\) \({E_1}\,\left( { - \,\frac{3}{{4{n^2}}}} \right)\, = \,\,40.8\,\,eV\,\,........\left( 2 \right)\)
સમીકરણ \((1)\) અને \((2)\) નો ગુણોતર લેતા,
\(\frac{{\left( {\frac{1}{{4{n^2}}}\,\, - \,\,1} \right)}}{{\left( { - \frac{3}{{4\,\,{n^2}}}} \right)}}\,\,\,\,\frac{{204}}{{40.8}}\,\,\,\,\)
\(\therefore \,\,\frac{{\left( {1\,\, - \,\,\frac{1}{{4\,{n^2}}}} \right)}}{{\left( {\frac{3}{{4\,\,{n^2}}}} \right)}}\,\, = \,\,5\,\,\)
\(\therefore\) \(n=2\)
$\text { ( } h =6.62 \times 10^{-34}\,Js)$ આવેલું છે.