\(V _{0}=\omega_{0} A =\sqrt{\frac{ K }{ m }} A....(i)\)
\(V =\omega A '=\sqrt{\frac{ K }{\frac{ m }{2}}} A '...(ii)\)
\(\therefore \quad A'= \sqrt{2} A\)
\(P_{i}=P_{f}\)
\(mV_0=\frac m{2} V\)
\(m(A \omega)=\frac{m}{2}\left(A^{\prime} \omega^{\prime}\right)\)
\(m A \sqrt{\frac{k}{m}}=\frac{m}{2} A^{\prime} \sqrt{\frac{k}{m / 2}}\)
\(m^{2} A^{2}\left[\frac{K}{m}\right]=\frac{m^{2}}{42}\left(A^{\prime}\right)^{2} \frac{k}{m} \times v\)
\(2 A^{2}=\left(A^{\prime}\right)^{2} \Rightarrow A^{\prime}=\sqrt{2}\)
$x_{1}=5 \sin \left(2 \pi t+\frac{\pi}{4}\right), x_{2}=5 \sqrt{2}(\sin 2\pi t+\cos 2 \pi t).$
તો $x_{1}$ અને $x_{2}$ના કંપવિસ્તારનો ગુણોતર .....