\(W=M B\left(\cos \theta_{1}-\cos \theta_{2}\right)\)
Here, \(\theta_{1}=0^{\circ}, \theta_{2}=60^{\circ}\)
\(=M B\left(1-\frac{1}{2}\right)=\frac{M B}{2}.........(i)\)
The torque on the needle is
\(\vec{\tau}=\vec{M} \times \vec{B}\)
In magnitude,
\(\tau=M B \sin \theta=M B \sin 60^{\circ}=\frac{\sqrt{3}}{2} M B.........(ii)\)
Dividing \((ii)\) by \((i)\), we get
\(\frac{\tau }{W} = \sqrt 3 \)
\(\tau = \sqrt 3 W = \sqrt 3 \times \sqrt 3 \,{\text{J}} = 3\,{\text{J}}\)
$(\pi=\frac{22}{7}$ લો)