\(B = \frac{{ - pV}}{{\Delta V}}\) \(...(i)\)
The volume of a spherical object of radius \(r\) is given as
\(V = \frac{4}{3}\pi {r^3}\,\,,\,\,\Delta V = \frac{4}{3}\pi \left( {3{r^2}} \right)\Delta r\)
\(\therefore - \frac{V}{{\Delta V}} = \frac{{\frac{4}{3}\pi {r^3}}}{{\frac{4}{3}\pi 3{r^2}\Delta r}}\,\,or\,\, - \frac{V}{{\Delta V}} = - \frac{r}{{3\Delta r}}\)
Put this value in eqn. \((i)\), we get
\(B = - \frac{{pr}}{{3\Delta r}}\)
Fractional decrease in radius is
\( - \frac{{\Delta r}}{r} = \frac{p}{{3B}}\)
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ પ્રતિબળ $\propto $ વિકૃતિ | $(i)$ $M^1\,L^{-1}\,T^{-2}$ |
$(b)$ દબનીયતાનું પારિમાણિક સૂત્ર | $(ii)$ $M^{-1}\,L^{1}\,T^{-2}$ |
$(iii)$ પોઇસન ગુણોત્તર | |
$(iv)$ હૂકનો નિયમ |