By \(Newton's\,law\) of cooling
\(\frac{{{\theta _1} - {\theta _2}}}{t} = - K\left[ {\frac{{{\theta _1} + {\theta _2}}}{2} - {\theta _0}} \right]\)
where \({\theta _0}\) is the temperature of surrounding. Now, hot water cools from \({60^ \circ }C\,to\,{50^ \circ }C\) in \(10\,minutes,\)
\(\frac{{60 - 50}}{{10}} = - K\left[ {\frac{{60 + 50}}{2}{\theta _0}} \right]\,\,\,\,\,\,\,\,\,\,...\left( i \right)\)
Agian, it cools from \({50^ \circ }C\,to\,{42^ \circ }C\) in next \(10\,minutes.\)
\(\frac{{50 - 42}}{{10}} = - K\left[ {\frac{{50 + 42}}{2} - {\theta _0}} \right]\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)\)
Dividing equations \((i)\) by \((ii)\) we get
\(\frac{1}{{0.8}} = \frac{{55 - {\theta _0}}}{{46 - {\theta _0}}}\)
\(\frac{{10}}{8} = \frac{{55 - {\theta _0}}}{{46 - {\theta _0}}}\)
\(460 - 10{\theta _0} = 440 - 8{\theta _0}\)
\(2{\theta _0} = 20\)
\({\theta _0} = {10^ \circ }c\)
કારણ : ચામડી પર પાણીનું પાતળું પડ ઉત્સર્જિતા વધારે છે