\(T=\sqrt{\frac{2 h}{g}}+\sqrt{\frac{2(H-h)}{g}}\)
For \(\max\) time \(=\frac{d T}{d h}=0\)
\(\sqrt{\frac{2}{g}}\left(\frac{-1}{2 \sqrt{\mathrm{H}-\mathrm{h}}}+\frac{1}{2 \sqrt{\mathrm{h}}}\right)=0\)
\(\sqrt{\mathrm{H}-\mathrm{h}}=\sqrt{\mathrm{h}}\)
\(\mathrm{h}=\frac{\mathrm{H}}{2} \Rightarrow \frac{\mathrm{H}}{\mathrm{h}}=2\)