તેથી \(10\,\, = \,\,\frac{{\left( {{n_2} - 1} \right)({n_2})}}{2}\,\,\,\,i.e.\,\,{n_2}^2 - {n_2} - 20\,\, = \,\,0\)
\({n_2}^2 - 5{n_2} + 4{n_2} - 20 = 0\,\,\,\)
\(\Rightarrow \,\,\,{n_2}({n_2} - 5) + 4({n_2} - 5) = 0\,\,\, \Rightarrow \,\,\,({n_2} + 4)({n_2} - 5) = 0\,\,\, \Rightarrow \,\,{n_2} = 5\)