$\frac{1}{\lambda }\,\, = \,\,R{z^2}\left( {\frac{1}{{n_1^2}} - \frac{1}{{n_2^2}}} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\frac{1}{\lambda }\,\,\, = \,\,R\left( {\frac{1}{1} - 0} \right)\,\,\, \Rightarrow \,\,\,\,\,\,\,\frac{1}{\lambda }\,\, = \,\,R\,\,\,\,\,$
$\,\frac{1}{\lambda }\,\, = \,\,109678\,\,c{m^{ - 1}}\,\,\,\,\,\upsilon \,\, = \,\,\frac{C}{\lambda }\,\,\, = C \times \frac{1}{\lambda }\,\,\, = \,\,C \times R$
$3 \times {10^8}m\,{s^{ - 1}} \times 1096700\,c{m^{ - 1}}\,\,\,\,$
$= 3 \times {10^{10}}cm\,{s^{ - 1}} \times 1096700\,\,c{m^{ - 1}}\,\,\, = \,\,3.29 \times {10^{15}}{\sec ^{ - 1}}$
$(C= 3 \times 10^8 \,ms^{-1},N_A = 6.02 \times 10^{23} mol^{-1}).$