$\frac{1}{2}C{l_2}(g)\xrightarrow{{\frac{1}{2}{\Delta _{diss}}{H^\Theta }}}Cl(g)\xrightarrow{{{\Delta _{eg}}{H^\Theta }}}$ $C{l^ - }(g)\xrightarrow{{{\Delta _{Hyd}}{H^\Theta }}}C{l^ - }(aq)$
તો $\frac{1}{2}C{l_2}(g)$ ના $Cl^-_{(aq)}$ માં રૂપાંતમાં ઊર્જાનો ફેરફાર ............. $\mathrm{kJ\,mol}^{-1}$ જણાવો.
$({{\Delta _{diss}}H_{C{l_2}}^\Theta } = 240\,kJ\,mol^{-1}, {{\Delta _{eg}}H_{C{l}}^\Theta }= -349 \,kJ\,mol^{-1},$${{\Delta _{Hyd}}H_{C{l}}^\Theta }= -381 \,kJ\,mol^{-1})$
$\frac{1}{2} C_{2}(g)$ to $C l^{-1}(a q)$ is given by
$\Delta H=\frac{1}{2} \Delta_{d i s s} H_{C l_{2}}^{(-)}+\Delta_{e g} H_{C l}^{(-)}+\Delta_{h y l} H_{C l}^{(-)}$
Substituting various values from given data, we get
$\Delta H=\left(\frac{1}{2} \times 240\right)+(-349)+(-381)\, k J \,m o l^{-1}$
$=(120-349-381)\, k J\, m o l^{-1}$
$=-610 \,k J \,m o l^{-1}$
$\Delta H_f^o\left( {CO} \right) = - 110.5\,kJ\,mo{l^{ - 1}};$
$\Delta H_f^o\left( {C{O_2}} \right) = - 393.5\,kJ\,mo{l^{ - 1}}$
${H_2}O(g) + C(s) \to CO(g) + {H_2}(g);\,\Delta H = 131\,kJ$$CO(g) + \frac{1}{2}{O_2}(g) \to C{O_2}(g);\Delta H = - 282\,kJ$
${H_2}(g) + \frac{1}{2}{O_2}(g) \to {H_2}O(g);\,\Delta H = - 242\,kJ$
$C(s) + {O_2}(g) \to C{O_2}(g);\,\Delta H = X\,kJ$
$X$ નું મૂલ્ય ......$kJ$