જો ${1 \over 2} \le {\log _{0.1}}x \le 2$ તો
  • A$x$ ની મહતમ કિંમત  $1/\sqrt {10} $
  • B$x$ ની વચ્ચે   $1/100$ અને  $1/\sqrt {10} $
  • C $x$ ની ન્યૂનતમ કિંમત  $1/100$
  • D
    ઉપર ના બધા 
Medium
Download our app for free and get startedPlay store
d
(d) \({1 \over 2} \le {\log _{0.1}}x \le 2\)

\({1 \over 2} \le {\log _{0.1}}\,x \Rightarrow {\log _{0.1}}{(0.1)^{1/2}} \le {\log _{0.1}}x\)

\( \Rightarrow \)\({(0.1)^{1/2}} \ge x\) \( \Rightarrow \)\(x \le {1 \over {\sqrt {10} }}\)

\({\log _{0.1}}x \le 2 \Rightarrow {\log _{0.1}}x \le {\log _{0.1}}{(0.1)^2}\)

\(x \ge {(0.1)^2} \Rightarrow x \ge {1 \over {100}}\), \({1 \over {100}} \le x \le {1 \over {\sqrt {10} }}\).

Hence, \({x_{{\rm{max}}}} = {1 \over {\sqrt {10} }},{x_{{\rm{min}}{\rm{.}}}} = {1 \over {100}}\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    જો ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}} $ તો આપલે પૈકી . . . સત્ય છે.
    View Solution
  • 2
    $\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $
    View Solution
  • 3
    ધારો કે $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c,$  $a, b, c \in Z$ પુર્ણાકો છે.$e=\sum_{n=0}^{\infty} \frac{1}{n !} $ હોય તો $a^2-b+c$ ની કિમંત મેળવો.
    View Solution
  • 4
    જો $x \ne 0 $ તો ${\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$
    View Solution
  • 5
    ${\log _2}7$ એ . . . . થાય.
    View Solution
  • 6
    સમીકરણ ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ નો ઉકેલ મેળવો.
    View Solution
  • 7
    અસમતા ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$ નો ઉકેલ ગણ મેળવો 
    View Solution
  • 8
    ${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
    View Solution
  • 9
    ${{2x} \over {{x^4} + {x^2} + 1}} = $
    View Solution
  • 10
    જો ${a^2} + 4{b^2} = 12ab $ તો $\log (a + 2b)= . . .$ .
    View Solution