Features
Discover
How it works
Resources
Question Answer
Download App
Home
Questions
JEE
SECTION - A [MATHS - MCQ]
ગુજરાતી માધ્યમ
જો ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ તો $m =$
A
$0$
B
$1$
C
$n$
D
$2n$
Easy
Download our app for free and get started
Solution
d
(d) \({2^{m(n + 1) + 2n + n}} = {2^{(m + 1)n + 2m}}\)
\( \Rightarrow \)\(mn + m + 3n = mn + 2m + n\)\( \Rightarrow \)\(m = 2n\).
ધોરણ 11 સાયન્સ
JEE
STD 11 - basic of algoritham
MATHS
Share
0
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!
No signup needed.*
Download App
Similar Questions
1
${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $
View Solution
2
જો $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$ તો $xyz = . . . .$
View Solution
3
જો ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ તો $x = . . . .$
View Solution
4
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$
View Solution
5
જો ${{ax - 1} \over {(1 - x + {x^2})\,(2 + x)}} = {x \over {1 - x + {x^2}}} - {1 \over {2 + x}}$, તો $a = $
View Solution
6
${\log _2}7$ એ . . . . થાય.
View Solution
7
જો ${{{x^3} - 6{x^2} + 10x - 2} \over {{x^2} - 5x + 6}} = f(x) + {A \over {(x - 2)}} + {B \over {(x - 3)}}$, તો $f(x) = $
View Solution
8
${{{x^2} + 13x + 15} \over {(2x + 3)\,{{(x + 3)}^2}}} = $
View Solution
9
જો ${{1 - \cos x} \over {\cos x(1 + \cos x)}} = {{\sin \alpha } \over {\cos x}} - {2 \over {1 + \cos x}}$, તો $\alpha = $
View Solution
10
સમીકરણ ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$ નો ઉકેલ મેળવો.
View Solution