${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $
  • A$1$
  • B$7/13$
  • C$13/7$
  • D
    એકપણ નહીં
Difficult
Download our app for free and get startedPlay store
b
(b) Let \(4 + \sqrt {15} = x\), then \(4 - \sqrt {15} = {1 \over x}\)

\(6 + \sqrt {35} = y\), then \(6 - \sqrt {35} = {1 \over y}\)

\(\therefore\) Given expression = \({{{x^{3/2}} + {1 \over {{x^{3/2}}}}} \over {{y^{3/2}} - {1 \over {{y^{3/2}}}}}} = {{{x^3} + 1} \over {{y^3} - 1}}.{\left( {{y \over x}} \right)^{3/2}}\)

\( = {{{{(4 + \sqrt {15} )}^3} + 1} \over {{{(6 + \sqrt {35} )}^3} - 1}}\,.\,{\left( {{{6 + \sqrt {35} } \over {4 + \sqrt {15} }}} \right)^{3/2}}\)

\( = {{(4 + \sqrt {15} + 1)\,\{ {{(4 + \sqrt {15} )}^2} - (4 + \sqrt {15} ) + 1\} } \over {(6 + \sqrt {35} - 1)\,\{ {{(6 + \sqrt {35} )}^2} + (6 + \sqrt {35} ) + 1\} }} \times {\left( {{{6 + \sqrt {35} } \over {4 + \sqrt {15} }}} \right)^{3/2}}\)

\( = {{5 + \sqrt {15} } \over {5 + \sqrt {35} }}.\,{{\{ 31 + 8\sqrt {15} - 4 - \sqrt {15} + 1\} } \over {\{ 71 + 12\sqrt {35} + 6 + \sqrt {35} + 1\} }}\,.\,{\left( {{{6 + \sqrt {35} } \over {4 + \sqrt {15} }}} \right)^{3/2}}\)

\( = {{\sqrt 5 + \sqrt 3 } \over {\sqrt 5 + \sqrt 7 }} \times \,{{28 + 7\sqrt {15} } \over {78 + 13\sqrt {35} }}\,{\left( {{{6 + \sqrt {35} } \over {4 + \sqrt {15} }}} \right)^{3/2}}\)

\( = {{\sqrt 5 + \sqrt 3 } \over {\sqrt 5 + \sqrt 7 }}.{7 \over {13}}.\sqrt {{{6 + \sqrt {35} } \over {4 + \sqrt {15} }}} \)

\( = {7 \over {13}}\,.\,{{\sqrt 3 + \sqrt 5 } \over {\sqrt 5 + \sqrt 7 }}\,.\,\sqrt {{{{{(\sqrt 5 + \sqrt 7 )}^2}} \over 2}\,.\,{2 \over {{{(\sqrt 3 + \sqrt 5 )}^2}}}} \)

\( = {7 \over {13}}\,.\,{{\sqrt 3 + \sqrt 5 } \over {\sqrt 5 + \sqrt 7 }}\,.\,{{\sqrt 5 + \sqrt 7 } \over {\sqrt 3 + \sqrt 5 }} = {7 \over {13}}\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    જો $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ તો $A = . . . .$
    View Solution
  • 2
    જો ${\log _{10}}x + {\log _{10}}\,y = 2$ હોય તો $(x + y)$ ની ન્યૂનતમ શકય કિમત મેળવો 
    View Solution
  • 3
    જો ${{{{\sin }^2}x + 1} \over {2{{\sin }^2}x - 5\sin x + 3}}$=${A \over {(2\sin x - 3)}} + {B \over {(\sin x - 1)}} + C$, તો
    View Solution
  • 4
    $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ નું વર્ગમૂળ મેળવો.
    View Solution
  • 5
    સરવાળો $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}= ..............$
    View Solution
  • 6
    ${{(x - a)(x - b)} \over {(x - c)(x - d)}} = {A \over {x - c}} - {B \over {(x - d)}} + C$, તો $C = . . .. $
    View Solution
  • 7
    ${{x + 1} \over {(x - 1)\,(x - 2)\,(x - 3)}} = $
    View Solution
  • 8
    જો ${{{{(x + 1)}^2}} \over {{x^3} + x}} = {A \over x} + {{Bx + C} \over {{x^2} + 1}}$, તો ${\sin ^{ - 1}}\left( {{A \over C}} \right) = $
    View Solution
  • 9
    જો ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, તો $a$ અને $b$ વચ્ચેનો સંબંધ મેળવો.
    View Solution
  • 10
    જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $
    View Solution