\(K_{sp }= S^2\)
\(S = \sqrt {ksp} = \sqrt {5.5 \times {{10}^{ - 5}}} \)
\(Ag_2SO_4 \) નો \(Ksp =\)\( 4S^3\)
\(S = 3\sqrt {\frac{{Ksp}}{4}} = 3\sqrt {\frac{{2 \times {{10}^{ - 5}}}}{4}} \)
તો \({{\text{S}}_{{\text{A}}{{\text{g}}_{\text{2}}}S{O_4}}} > {{\text{S}}_{{\text{AgBr}}{{\text{O}}_{\text{3}}}}}{\text{ }}\)
ક્રમ |
સૂત્ર |
દ્રવ્યતા ગુણાકાર |
$1$ |
$PQ$ |
$4.0\times 10^{-20}$ |
$2$ |
$PQ_2$ |
$3.2 \times 10^{-14}$ |
$3$ |
$PQ_3$ |
$2.7\times 10^{-35}$ |
$(a)$ $ 10^{-10}$ $(b)$ $\frac{{Kw}}{{{{10}^{ - 10}}}}$ $(c)$ $\frac{{Kw}}{{{{10}^{ - 8}}}}$ $(d)$ $10^{-4}$