\(\mathrm{m}_{\mathrm{a}}=\frac{\mathrm{E}_{\mathrm{m}}}{\mathrm{E}_{\mathrm{c}}}=\frac{\mathrm{A}}{\mathrm{A}}=1\)
Equation of modulated signal \(\left[\mathrm{C}_{\mathrm{m}}(\mathrm{t})\right]\) \( = {{\text{E}}_{{\text{(C)}}}} + {{\text{m}}_{\text{a}}}{{\text{E}}_{{\text{(C)}}}}\sin {\omega _{\text{m}}}{\text{t}}\)
\(=\mathrm{A}\left(1+\sin \mathrm{w}_{\mathrm{C}} \mathrm{t}\right) \sin \omega_{\mathrm{m}} \mathrm{t}\)
(As \(\left.\mathrm{E}_{(\mathrm{C})}=\mathrm{A} \sin \omega_{\mathrm{C}} \mathrm{t}\right)\)