by substituting the following dimensions :
$[G] = [{M^{ - 1}}{L^3}{T^{ - 2}}],\,[c] = [L{T^{ - 1}}],[g] = [L{T^{ - 2}}]$
$[p] = [M{L^{ - 1}}{T^{ - 2}}]$
and by comparing the powers of both sides we can get $x = 0,\,y = 2,\,z = - 1$
$\therefore $ $[G] \propto {c^0}{g^2}{p^{ - 1}}$
$80.0,80.5,81.0,81.5,82$
$3.29 \,cm, 3.28\, cm, 3.29 \,cm, 3.31 \,cm,$ $ 3.28\, cm, 3.27 \,cm, 3.29 \,cm, 3.30\, cm$