$80.0,80.5,81.0,81.5,82$
\(M P E=\frac{1}{n} \sum\left(\frac{x-\bar{x}}{x}\right) \times 100 \%\) \(...(1)\)
The mean value of the errors is calculated as,
Mean of the errors \(=\frac{80+80.5+81+81.5+82}{5}\)
\(=81\)
\(x\) | \(x-\bar{x}\) | \(\frac{x-\bar{x}}{x}\) |
\(80.0\) | \(1.0\) | \(0.0125\) |
\(80.5\) | \(0.5\) | \(0.0062\) |
\(81.0\) | \(0\) | \(0\) |
\(81.5\) | \(0.5\) | \(0.0061\) |
\(82.0\) | \(1.0\) | \(0.122\) |
Sum\(=0.037\) |
Substituting the values in equation \((1),\) we get
\(M P E=\frac{1}{5} \times(0.037) \times 100 \%\)
\(=0.74 \%\)
કારણ: સાર્થક અંકો એ જે તે માપનયંત્ર ની ચોકસાઇ દર્શાવે છે.