$(A)\quad\quad\quad\quad(B)$
\({V}_{{A}}=0 {V} \Rightarrow {A}=0\)
\({V}_{{B}}=5 {V} \Rightarrow {B}=1\)
\({V}_{{B}}=0 {V} \Rightarrow {B}=0\)
If \({A}={B}=0\), there is no potential anywhere here \({V}_{0}=0\)
If \({A}=1, {B}=0\), Diode \({D}_{1}\) is forward biased, here \({V}_{0}=5 {V}\)
If \({A}=0, {B}=1\), Diode \({D}_{2}\) is forward biased hence \({V}_{0}=5 {V}\)
If \({A}=1, {B}=1\), Both diodes are forward biased hence \({V}_{0}=5 {V}\)
Truth table for \({I}^{{st}}\)
\(A\) | \(B\) | Output |
\(0\) | \(0\) | \(0\) |
\(0\) | \(1\) | \(1\) |
\(1\) | \(0\) | \(1\) |
\(1\) | \(1\) | \(1\) |
\(\therefore\) Given circuit is \(OR\) gate
For \(\mathbb{I}^{{Id}}\) circuit
\({V}_{{B}}=5 {V}, {A}=1\)
\({V}_{{B}}=0 {V}, {A}=0\)
When \({A}=0, {E}-{B}\) junction is unbiased there is no current through it
\(\therefore {V}_{0}=1\)
When \({A}=1, {E}-{B}\) junction is forward biased
\({V}_{0}=0\)
\(\therefore\) Hence this circuit is not gate.
$\text { ( } \mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{e}=1.6 \times10^{-19}\mathrm{C}$આપેલ છે.
$A$ |
$B$ |
$Y$ |
$0$ |
$0$ |
$0$ |
$0$ |
$1$ |
$1$ |
$1$ |
$0$ |
$1$ |
$1$ |
$1$ |
$0$ |