\(I_1=\) Intensity of light transmitted from \(1^{\text {st }}\) polaroid
\(=\frac{I_0}{2}\)
\(\theta\) be the angle between \(1^{\text {st }}\) and \(2^{\text {nd }}\) polaroid
\(\phi\) be the angle between \(2^{\text {nd }}\) and \(3^{\text {rd }}\) polaroid
\(\theta+\phi=90^{\circ}\) (as \(1^{\text {st }}\) and \(3^{\text {rd }}\) polaroid are crossed)
\(\phi=90^{\circ}-\theta\)
\(\mathrm{I}_2=\) Intensity from \(2^{\text {nd }}\) polaroid
\(I_2=I_1 \cos ^2 \theta=\frac{I_0}{2} \cos ^2 \theta\)
\(\mathrm{I}_3=\) Intensity from \(3^{\text {rd }}\) polaroid
\(\mathrm{I}_3=\mathrm{I}_2 \cos ^2 \phi\)
\(\mathrm{I}_3=\mathrm{I}_1 \cos ^2 \theta \cos ^2 \phi\)
\(\mathrm{I}_3=\frac{\mathrm{I}_0}{2} \cos ^2 \theta \cos ^2 \phi\)
\(\phi=90-\theta\)
\(I_3=\frac{I_0}{2} \cos ^2 \theta \sin ^2 \theta\)
\(I_3=\frac{I_0}{2}\left[\frac{2 \sin \theta \cos \theta}{2}\right]^2\)
\(I_3=\frac{I_0}{8} \sin ^2 2 \theta\)
\(\mathrm{I}_3\) will be maximum when \(\sin 2 \theta=1\)
\( 2 \theta=90^{\circ} \)
\( \theta=45^{\circ}\)