જયારે $ T_2 = 37\,^oC$ $= 310\,K$, $ k_2 = 2k$
સમીકરણમાં આ કિંમતોને મૂકતાં,
$\log \frac{{{k_2}}}{{{k_1}}}{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} \frac{{{E_a}}}{{2.303R}}{\mkern 1mu} \left( {\frac{{{T_2}{\mkern 1mu} - {\mkern 1mu} {T_1}}}{{{T_1}{T_2}}}} \right)$
$ \Rightarrow {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \log \frac{{2k}}{k}{\mkern 1mu} {\mkern 1mu} = $ $\frac{E}{{2.303{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} {\mkern 1mu} 8.314}}{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} {\mkern 1mu} \frac{{310{\mkern 1mu} {\mkern 1mu} - {\mkern 1mu} {\mkern 1mu} 300}}{{300{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} {\mkern 1mu} 310}}$
અથવા $\log \,{\mkern 1mu} 2{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} \frac{{{E_a}}}{{2.303{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} {\mkern 1mu} 8.314}}{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} {\mkern 1mu} \frac{{10}}{{300{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} {\mkern 1mu} 310}}$
$ \Rightarrow $ અથવા $\log \,{\mkern 1mu} 2{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} \frac{{{E_a}}}{{2.303{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} {\mkern 1mu} 8.314}}{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} \frac{{10}}{{300{\mkern 1mu} {\mkern 1mu} \times {\mkern 1mu} {\mkern 1mu} 310}}$
ઉકેલતા મેળવવામાં આવતું
${E_a}{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 53598.6\,J{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}}$
${\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 53.6{\mkern 1mu} {\mkern 1mu} \,kJ{\mkern 1mu} \,{\mkern 1mu} mo{l^{ - 1}}$
(નજીકના પૂર્ણાંકમાં રાઉન્ડ ઑફ) $[$ ઉપયોગ કરો : $\left. R =8.31 \,J \,K ^{-1} \,mol ^{-1}\right]$