\(k=\frac{2.303}{t} \log \frac{a}{a-x}\)
Where, \(k=\) Rate constant
\(a=\) initial concentration
\(a-x=\) concentration after time \({ }^{\prime} t^{\prime}\)
For half-life, \(t=t_{1 / 2}, x=\frac{a}{2}\)
On substituting the values, we get
\(k=\frac{2.303}{t_{1 / 2}} \log \frac{a}{a-\frac{a}{2}}=\frac{2.303}{t_{1 / 2}} \log 2\)
\(=\frac{0.693}{t_{1 / 2}}\)
\(k=\frac{0.693}{t_{1 / 2}}\)
Thus, \(t_{1/2}\) of a first order reaction does not depend upon the concentration.

[લો; $R =8.314 \,J\, mol ^{-1}\, K ^{-1}$ In $3.555=1.268$]
$ O_3 $ $\rightleftharpoons$ $ O_2 + O$ ...... (ઝડપી) ;
$O + O_3 \rightarrow 2O_2$ ...... (ધીમી)