\(\begin{gathered}
U = \int\limits_0^r {\alpha {r^2}} dr = \frac{{a{r^3}}}{3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( i \right) \hfill \\
As,\,\,\frac{{m{v^2}}}{r} = \alpha {r^2} \hfill \\
\Rightarrow \,\frac{1}{2}m{v^2} = \frac{{\alpha \,{r^3}}}{2} \hfill \\
or,\,\,\left( {KE} \right) = \frac{1}{2}\,\alpha {r^3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right) \hfill \\
\end{gathered} \)
Total energy = Potential energy + kinetic energy
Now, from eqn \((i)\) and \((ii)\)
Total energy \(= K.E. + P.E.\)
\( = \frac{{\alpha {r^3}}}{3} + \frac{{\alpha {r^3}}}{2} = \frac{5}{6}\alpha {r^3}\)
( $g=10 ms ^{-2}$ લો.)