\(=[M+ \Delta m - M] = \Delta m\)
ઉત્પન થતી ઉર્જા \(Q = \Delta M c^2 = \Delta m c^2\).........\((1)\)
વેગમાન સરક્ષણ નિયમ પરથી ,
\((M + \Delta m)\,{X_0} = \frac{M}{2} \times \,\mathop {{\upsilon _1}}\limits^ \to + \frac{M}{2} \times \mathop {{\upsilon _2}}\limits^ \to \)
\(\Rightarrow \,\mathop {{\upsilon _2}}\limits^ \to = - \mathop {{\upsilon _2}}\limits^ \to \,\,\)
\(\therefore\) \({\upsilon _1} = {\upsilon _2}\)
\(Q = \frac{1}{2}\left( {\frac{M}{2}} \right)\,\upsilon _1^2 + \frac{1}{2}\left( {\frac{M}{2}} \right)\upsilon _2^2 - \frac{1}{2}(M + \Delta m) \times {(0)^2}\)
\( = \frac{M}{2}\,\,\,\upsilon _1^2\,\,\,\,(\because \,\,\,{\upsilon _1} = {\upsilon _2})\,\,\,.....(2)\)
સમીકરણ \(1\) અને \(2\) ને સરખાવતા,
\(\left( {\frac{M}{2}} \right)\,\upsilon _1^2 = \Delta m{c^2}\)
\(\therefore\) \(\upsilon _1^2 = \frac{{2\Delta m{c^2}}}{M}\)
\(\therefore\) \({\upsilon _1} = c\sqrt {\frac{{2\Delta m}}{M}} \)