By using \(N = {N_0}{\left( {\frac{1}{2}} \right)^n}\)
==> \(\frac{{{N_1}}}{{{N_2}}} = \frac{{{{({N_0})}_1}}}{{{{({N_0})}_2}}} \times \frac{{{{\left( {\frac{1}{2}} \right)}^{{n_1}}}}}{{{{\left( {\frac{1}{2}} \right)}^{{n_2}}}}}\)
\( = \frac{2}{1} \times \frac{{{{\left( {\frac{1}{2}} \right)}^4}}}{{{{\left( {\frac{1}{2}} \right)}^3}}} = \frac{1}{1}\)
$(I)$ $_92^U{235} + _0n^1 \,X + 35^Br85 + 3 \,_0n^1$
$(II)$ $_3Li^6 + _1H^2 \,Y + _2He^4$