\(\sqrt {{x^2} + {y^2}} = \sqrt {{{\left( {x + y} \right)}^2} + \; {{\left( {x - y} \right)}^2} + \; 2 \left( {x + \; y} \right)\left( {x - y} \right)\cos \theta }\)
\( \Rightarrow {x^2} + \; {y^2} = 2{x^2} + \; 2{y^2} + \; 2\left( {{x^2} - {y^2}} \right) \cos \theta\)
\( \Rightarrow - \left( {{x^2} + \; {y^2}} \right) = 2\left( {{x^2} - {y^2}} \right) \cos \theta\)
\( \Rightarrow \cos \theta = \frac{{ - \left( {{x^2} + \; {y^2}} \right)}}{{2 \left( {{x^2} - {y^2}} \right)}}\)
\(\Rightarrow \theta = {\cos ^{ - 1}} \left( {\frac{{ - \left( {{x^2} + {y^2}} \right)}}{{2 \left( {{x^2} - {y^2}} \right)}}} \right)\)