\(I =\int_{0}^{ L } x ^{2} \lambda_{0}\left(1+\frac{ x }{ L }\right) dx\)
\(I=\lambda_{0} \int_{0}^{L}\left(x^{2}+\frac{x^{3}}{L}\right) d x\)
\(I=\lambda\left[\frac{L^{3}}{3}+\frac{L^{3}}{4}\right]\)
\(I =\frac{7 L ^{3} \lambda_{0}}{12}\) \(...(i)\)
\(M=\int_{0}^{L} \lambda \cdot d x=\int_{0}^{L} \lambda_{0}\left(1+\frac{ x }{ L }\right) dx\)
\(M=\lambda_{0}\left(L+\frac{L}{2}\right)=\lambda_{0} \frac{3 L}{2}\)
\(\frac{2}{3} M =\left(\lambda_{0} L \right)\)\(...(ii)\)
\(From\) \((i)\) \(\&\) \((ii)\)
.\(I=\frac{7}{12}\left(\frac{2}{3} M\right) L^{2}=\frac{7 M L^{2}}{18}\)