There is certain velocity so called as critical velocity/minimum velocity (v) of object at highest point below which string become slack le. tension T vanishes (T=0).
\(m g=\frac{m v_{1}^{2}}{l}\)
\(v_{1}=\sqrt{g l}\)
The decrease in potential energy between top \(-\)position and bottom position is
\(m g l-(-m g l)=2 m g l\)
This must be equal to the increase in kinetic energy, when particle move from highest point
i.e.
\(\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}\)
Using law of conservation of energy.
\(2 m g l=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}\)
\(2 m g l=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m g l\)
\(4 m g l=m v_{2}^{2}-m g l\)
\(v_{2}^{2}=5 g l\)
\(v_{2}=\sqrt{5 g l}\)