\(\overrightarrow{ v }_{02}=\overrightarrow{0}\)
\(m _{1}=2 m _{2}\)
After collision, \(\overrightarrow{ v }_{1}=(\hat{ i }+\sqrt{3} \hat{ j }) m / s\)
\(\overrightarrow{ v }_{2}=?\)
Applying conservation of linear momentum,
\(m _{1} \overrightarrow{ v }_{01}+ m _{2} \overrightarrow{ v }_{0 2}= m _{1} \overrightarrow{ v }_{1}+ m _{2} \overrightarrow{ v }_{2}\)
\(2 m_{2}(\sqrt{3 \hat{i}}+\hat{j})+0=2 m_{2}(\hat{i}+\sqrt{3} \hat{j})+m_{2} \vec{v}_{2}\)
\(\overrightarrow{ v }_{2}=2(\sqrt{3 \hat{ i }}+\hat{ j })-2(\hat{ i }+\sqrt{3} \hat{ j })\)
\(=2(\sqrt{3 \hat{1}}-\hat{j})+2(\hat{i}-\sqrt{3} \hat{j})\)
\(\overrightarrow{ v }_{2}=2(\sqrt{3}-1)(\hat{ i }-\hat{ j })\)
for angle between \(\overrightarrow{ v }_{1} \& \overrightarrow{ v }_{2}\)
\(\cos \theta=\frac{\overrightarrow{ v }_{1} \cdot \overrightarrow{ v }_{2}}{\overrightarrow{ v }_{1} \overrightarrow{ v }_{2}}=\frac{2(\sqrt{3}-1)(1-\sqrt{3})}{2 \times 2 \sqrt{2}(\sqrt{3}-1)}\)
\(\cos \theta=\frac{1-\sqrt{3}}{2 \sqrt{2}} \Rightarrow \theta=105^{\circ}\)