\(Case 1\) \(M_{2}=2 m_{1}\)
\(a_{1}=\frac{2 m_{1} g-m_{1} g}{3 m_{1}}\)
\(a_{1}=g / 3\)
Case \(-2\)
\(M_{2}=3 m_{1}\)
\(a_{2}=\frac{3 m_{1} g-m_{1} g}{4 m_{1}}\)
\(a_{2}=\frac{g}{2}\)
\(\frac{a_{1}}{a_{2}}=\frac{\frac{g}{3}}{\frac{g}{2}}=\frac{2}{3}\)