Let the angular acceleration of the disc be \(\alpha .\)
since the string moves without slipping on the disc,
\(a=R \alpha\)
\(a=\frac{m g-T}{m}\)
\(T=m g-m a.....(1)\)
\(\alpha=\frac{\tau}{I}\)
where \(\tau=\) torque \(=T R\)
and \(I=\frac{M R^{2}}{2}\)
\(T=\frac{M a}{2}\)
From \((1)\) and \((2)\)
\(a=\frac{2 m g}{m+2 M}\)
\({V}^{2}={u}^{2}+2as\)
\(u=0\)
\(s=h\)
\(V=\sqrt {\dfrac {4mgh}{2m+M}}\)