\([\) after bullet gets embedded till the system comes momentarily at rest \(]\)
\(( M + m ) g h =\frac{1}{2}( M + m ) v _{1}^{2}\)
\(\left[ v _{1}\right.\) is velocity after collision]
\(\therefore v _{1}=\sqrt{2 gh }\)
Applying momentum conservation, (just before and just after collision)
\(mv =( M + m ) v _{1}\)
\(v =\left(\frac{ M + m }{ m }\right) v _{1}=\frac{6}{10 \times 10^{-3}} \times \sqrt{2 \times 9.8 \times 9.8 \times 10^{-2}}\)
\(\approx 831.55\, m / s\)