${K_P} = \frac{{{{({P_{N{H_3}}})}^2} \times ({P_{C{O_2}}})}}{{{P_{N{H_2}COON{H_4}(s)}}}}$
$ = {({P_{N{H_3}}})^2} \times ({P_{C{O_2}}})$
As evident by the reaction, $NH_3$ and $CO_2$ are formed in molar ratio of $2:1$. Thus if $P$ is the total pressure of the system at equilibrium, then
${P_{N{H_3}}} = \frac{{2 \times P}}{3}$ ${P_{C{O_2}}} = \frac{{1 \times P}}{3}$
${K_P} = {\left( {\frac{{2P}}{3}} \right)^2} \times \frac{P}{3} = \frac{{4{P^3}}}{{27}}$
Given ${K_P} = 2.9 \times {10^{ - 5}}$
$\therefore \,2.9 \times {10^{ - 5}} = \frac{{4{P^3}}}{{27}}$
${P^3} = \frac{{2.9 \times {{10}^{ - 5}} \times 27}}{4}$
$P = {\left( {\frac{{2.9 \times {{10}^{ - 5}} \times 27}}{4}} \right)^{1/3}} = 5.82 \times {10^{ - 2}}\,atm$
$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ માટે સંતુલન અચળાંક ......... થશે.
$X :\, 2SO_{2(g)} + O_{2(g)} $ $\rightleftharpoons$ $ 2SO_{3(g)}$
$Y:\, PCl_{5(g)} $ $\rightleftharpoons$ $ PCl_{3(g)} + Cl_{2(g)}$
$Z :\, 2HI_{(g)} $ $\rightleftharpoons$ $ H_{2(g)} + I_{2(g)}$