$T$ (in, $K$) $- 769$ , $1/T$ (in, $K^{-1}$ ) $- 1.3\times 10^{-3},$
$\log_{10}K - 2.9\,T$ (in, $K$) $- 667$, $1/T$ (in, $K^{-1}) - 1.5\times 10^{-3}$, $\log_{10}\,K - 1.1$
$\log \frac{{{K_2}}}{{{K_1}}}\, = \frac{{{E_a}}}{{2.303R}}\left( {\frac{1}{{{T_1}}}\, - \,\frac{1}{{{T_2}}}} \right)$ $R = 2$
$\log {K_2}\, - \log {K_1}\, = \frac{{{E_a}}}{{2.303 \times 2}}[1.5 \times \,{10^{ - 3}}\, - \,1.3\,\, \times \,{10^{ - 3}}]$
$2.9 - 1.1 = \frac{{{E_a}}}{{2.303 \times 2}}\,\, \times 0.2 \times {10^{ - 3}}$
$1.8 = \frac{{{E_a}}}{{2.303 \times 2}} \times 0.2 \times {10^{ - 3}}$
${E_a} = \frac{{1.8\,\, \times \,\,2.303}}{{{{10}^{ - 4}}}}\,\, = \,\,4\,\, \times \,\,{10^4}$
$2 A + B \longrightarrow C + D$
પ્રયોગ | $[ A ] / molL ^{-1}$ | $[ B ] / molL ^{-1}$ | પ્રાથમિક $rate/molL$ $^{-1}$ $\min ^{-1}$ |
$I$ | $0.1$ | $0.1$ | $6.00 \times 10^{-3}$ |
$II$ | $0.1$ | $0.2$ | $2.40 \times 10^{-2}$ |
$III$ | $0.2$ | $0.1$ | $1.20 \times 10^{-2}$ |
$IV$ | $X$ | $0.2$ | $7.20 \times 10^{-2}$ |
$V$ | $0.3$ | $Y$ | $2.88 \times 10^{-1}$ |
આપેલા ટેબલ માં $X$ અને $Y$ અનુક્રમે શું હશે ?
$p ( mm Hg )$ | $50$ | $100$ | $200$ | $400$ |
સાપેક્ષ $t _{1 / 2}( s )$ | $4$ | $2$ | $1$ | $0.5$ |
પ્રક્રિયાનો ક્રમ શોધો.