\(\frac{1}{2} Kx ^{2}+\frac{1}{2} mv ^{2}+\frac{1}{2} I \omega^{2}= C\)
\(\frac{1}{2} K (2 x ) \frac{ dx }{ dt }+\frac{1}{2} m (2 v ) \frac{ dv }{ dt }+\frac{1}{2} I \frac{2 v }{ r ^{2}} \frac{ d v }{ dt }=0\)
\(Kvx +\frac{ m }{4} va +\frac{ m }{2} va =0\)
\(- Kx =\frac{3 ma }{4}\)
Simplify further.
\(a =-\frac{4 K }{3 m } x =-\omega^{2} x\)
\(\omega^{2}=\frac{4 K }{3 m }\)
\(\omega=\sqrt{\frac{4 K }{3 m }}\)
Substitute the values as,
\(\omega=\sqrt{\frac{4(100)}{3(1)}}\)
\(=\frac{20}{\sqrt{3}} rad / sec\)