when switch is opened
\(Q\) on \(2^{nd}\) capacitor is \(cv\) even after introduction of dielectric \(Q\) remain same but
\(C\) will become \(KC\)
Energy \(=\frac{ Q ^2}{2 C ^2}=\frac{( cv )^2}{2\left( K _{ l }\right)}=\frac{ cv ^2}{2 k }\)
Energy is set is \(\frac{1}{2} cv ^2\)
same as before
after dielectric insertion
\(c\) become \(kc\)
Energy \(=\frac{1}{2}( kc ) v ^2\)
\(=\frac{ kcv ^2}{2}\)
Total energy initially \(=\frac{1}{2} c v^2+\frac{1}{2} c v^2=c^2 \cdots(1)\)
Total energy after opening switch \(= k \frac{ cv ^2}{2}+\frac{ cv ^2}{2 k }\)
\(=\frac{c v^2}{2}\left( k +\frac{1}{ k }\right)\)
put \(k=3\)
\(=\frac{ cV ^2(10)}{2 \times 3}=\frac{5 CV ^2}{3} \ldots(2)\)
\((1)\) \(\div(2)\)
\(=3 / 5\)
વિધાન $-2$ : સમસ્થિતિમાન પૃષ્ઠ પર વિદ્યુતબળની રેખાઓ સપાટીને લંબ હોય છે.