\(y=\overline{A \bar{B}} \cdot \overline{\bar{A} B}\)
\(y=(\bar{A}+B) \cdot(A+\bar{B})\)
\(y=\bar{A} \cdot A+\bar{A} \bar{B}+A \cdot B+B \bar{B}\)
\(y=A B+\bar{A} \bar{B}\)
\(A\) | \(B\) | \(Y = AB +\overline{ A } \overline{ B }\) |
\(0\) | \(0\) | \(1\) |
\(0\) | \(1\) | \(0\) |
\(1\) | \(0\) | \(0\) |
\(1\) | \(1\) | \(1\) |