$\mathrm{A}+\mathrm{B} \underset{\text { Step } 3}{\text { Step } 1} \mathrm{C} \xrightarrow{\text { Step } 2} \mathrm{P}$
પ્રથમના વર્તુળ પ્રક્રિયાની માહિતી નીચે સૂચવેલી છે.
સ્ટેપ |
Rate constant $\left(\sec ^{-1}\right)$ |
Activation energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ |
$1$ | ${k}_1$ | $300$ |
$2$ | ${k}_2$ | $200$ |
$3$ | ${k}_3$ | $\mathrm{Ea}_3$ |
ઉપરોક્ત રીતેની પ્રક્રિયાનું વધારણીક વર્તુળ $(k)$ આપવામાં આવે છે. $\mathrm{k}=\frac{\mathrm{k}_1 \mathrm{k}_2}{\mathrm{k}_3}$ અને ઉપરોક્ત વધારણીક તાપ $(E_2)= 400$ કેલ્વિન છે, તો $\mathrm{Ea}_3$ નું મૂલ્ય છે $\mathrm{kJ} \mathrm{mol}^{-1}$ (નજીકની પૂર્ણાંક).
$A \mathrm{e}^{\frac{-\mathrm{E}_2}{\mathrm{RT}}}=\frac{\mathrm{A}_1 \mathrm{e}^{\frac{-\mathrm{E}_{\mathrm{a}_1}}{\mathrm{RT}}} \mathrm{A}_2 \mathrm{e}^{\frac{-\mathrm{E}_{2_2}}{\mathrm{RT}}}}{\mathrm{A}_3 \mathrm{e}^{\frac{-\mathrm{E}_{\mathrm{a}_1}}{\mathrm{RT}}}}$
$A \mathrm{e}^{\frac{-\mathrm{E}_2}{\mathrm{RT}}}=\frac{\mathrm{A}_1 \mathrm{~A}_2}{\mathrm{~A}_3} \mathrm{e}^{\frac{-\left(\mathrm{E}_{\mathrm{a}_2}+\mathrm{E}_{\mathrm{a}_2}-\mathrm{E}_{\mathrm{E}_3}\right)}{\mathrm{RT}}}$
$\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\mathrm{a}_1}+\mathrm{E}_{\mathrm{a}_2}-\mathrm{E}_{\mathrm{a}_3}$
$400=300+200-\mathrm{E}_{\mathrm{a}_3}$
$\mathrm{E}_{\mathrm{a}_3}=100 \mathrm{~kJ} / \mathrm{mole}$
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $318 \,K$ પર ${N}_{2} {O}_{5}$ની પ્રારંભિક સાંદ્રતા $2.40 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ છે. $1$ કલાક પછી ${N}_{2} {O}_{5}$ની સાંદ્રતા $1.60 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ હતી. $318\, {~K}$ પર પ્રક્રિયાનો વેગ અચળાંક $.....\,\times 10^{-3} {~min}^{-1}.$ (નજીકના પૂર્ણાંકમાં)
[આપેલ છે: $\log 3=0.477, \log 5=0.699$ ]
$A +$ પ્રક્રિયક $\rightarrow $ નિપજ
$B +$ પ્રક્રિયક $\rightarrow $ નિપજ;
તો સમાન સમયે $50\% \,B$ ની પ્રક્રિયા થાય અને $94\%\, A$ ની પ્રક્રિયા થાય તો $K_1/K_2$ નો ગુણોત્તર ગણો.
$1$. $[A]$ $0.1$, $[B]$ $0.1 - $ પ્રારંભિક દર $ \rightarrow 7.5 \times 10^{-3}$
$2$. $[A]$ $0.3$, $[B]$ $0.2 -$ પ્રારંભિક દર $ \rightarrow 9.0 \times 10^{-2}$
$3$. $[A]$ $0.3$, $[B]$ $0.4 -$ પ્રારંભિક દર $ \rightarrow 3.6 \times 10^{-1}$
$4$. $[A]$ $0.4$, $[B]$ $0.1 -$ પ્રારંભિક દર $ \rightarrow 3.0 \times 10^{-2}$