$A _{( g )} \rightarrow 2 B _{( g )}+ C _{( g )}$
$A$ અને $P _{ t }$ નું પ્રારંભિક દબાણ $P _{0}$ છે $'t'$ સમયે કુલ દબાણ એકીકૃત દર સમીકરણ શું હશે ?
| \(A_{(g)} \rightarrow 2 B_{(g)}+C_{(g)}\) | |||
| Initial | \(P _{0}\) | \(0\) | \(0\) |
| \(P _{0}- P\) | \(2P\) | \(P\) | |
\(P_{t} =P_{0}-P+2 P+P\)
\(=P_{0}+2 P\)
Therefore,
\(P =\frac{ P _{ t }+ P _{0}}{2}\)
Apply the expression shown below to calculate rate constant.
\(k=\frac{2.303}{t} \log \left[\frac{ P _{0}}{ P _{0}- P }\right]\)
Substitute the value of \(P\) in above equation.
\(k=\frac{2.303}{t} \log \left[\frac{ P _{0}}{ P _{0}-\left(\frac{ P _{ t }+ P _{0}}{2}\right)}\right]\)
\(=\frac{2.303}{t} \log \left[\frac{2 P _{0}}{2 P _{0}- P _{ t }+ P _{0}}\right]\)
\(=\frac{2.303}{ t } \log \left(\frac{2 P _{0}}{3 P _{0}- P _{ t }}\right)\)