$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ તો $\frac{d[NH_3]}{dt}$ અને $\frac{d[H_2]}{dt}$ વચ્ચેનો સમાનતાનો સંબંધ ............ થશે.
Rate $=\frac{-d\left[\mathrm{N}_{2}\right]}{d t}=-\frac{d\left[\mathrm{H}_{2}\right]}{3 d t}=+\frac{d\left[\mathrm{NH}_{3}\right]}{2 d t}$
Hence, $+\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{2}{3} \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
$\mathop {2{N_2}{O_5}}\limits_{{\rm{(in}}\,\,{\rm{CC}}{{\rm{l}}_4}{\rm{)}}} \to \mathop {4N{O_2}}\limits_{{\rm{(in}}\,\,{\rm{CC}}{{\rm{l}}_4}{\rm{)}}} + {O_2}$
$\left[\right.$ આપેલ છે $\left.: \log _{10} 2=0.301, \ln 10=2.303\right]$