નો $K_{sp}$ ........ થશે.
$(R = 8.314\, J\, K^{-1}\,mol^{-1})$
$Ag_2CO_{3(s)} \rightleftharpoons 2Ag^+_{(aq)} + CO^{2-}_{3(s)}$
We have Given, $\Delta G^{o}=+63.3 \,\mathrm{KJ}=63.3 \times 10^{3} \,\mathrm{J}$
Thus, substitute $\Delta G^{o}=63.3 \times 10^{3} \,\mathrm{J}$
$\mathrm{R}=8.314 \,\mathrm{JK}^{-1} \,\mathrm{mol}^{-1}$
and $T=298 \,\mathrm{K}[25+273 \,\mathrm{K}]$ into the above equation to get, $63.3 \times 10^{3}=-2.303 \times 8.314 \times 298 \log \mathrm{K}_{\mathrm{sp}}$
$\log \mathrm{Ksp}=-11.09$
$\mathrm{Ksp}=$ antilog $(-11.09)$
$\mathrm{Ksp}=8.0 \times 10^{-12}$
$\Delta \mathrm{G}^{o}$ is related to $\mathrm{K}_{\mathrm{sp}}$ by the equation, $\Delta G^{o}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{sp}}$
We have Given, $\Delta G^{o}=+63.3\, \mathrm{KJ}=63.3 \times 10^{3}\, \mathrm{J}$
Thus, substitute $\Delta G^{o}=63.3 \times 10^{3} \,\mathrm{J}$
$\mathrm{R}=8.314 \,\mathrm{JK}^{-1}\, \mathrm{mol}^{-1}$
and $\mathrm{T}=298\, \mathrm{K}[25+273 \,\mathrm{K}]$ into the above equation to get, $63.3 \times 10^{3}=-2.303 \times 8.314 \times 298 \log \mathrm{K}_{\mathrm{sp}}$
$\log \mathrm{Ksp}=-11.09$
$\mathrm{Ksp}=$ antilog $(-11.09)$ $\mathrm{Ksp}=8.0 \times 10^{-12}$
[આપેલ : $R=0.082 \,L \,atm\, K ^{-1}\, mol ^{-1}$ ]
[આપેલ $: R =8.31 \,J \,K ^{-1} \,mol ^{-1}, \log 1.33=0.1239$ $\ln 10=2.3]$