(વાયુનો અચળાંક $R=8.3 \;JK ^{-1} mol ^{- 1}$ લો)
\(M=4.0 \mathrm{g} \mathrm{mol}^{-1}\)
As the speed of the sound in the gas is
\(v=\sqrt{\frac{\gamma R T}{M}}\)
where \(\gamma\) is the ratio of two specific heats, \(R\) is the universal gas constant and \(T\) is the temperature of the gas.
\(\therefore \gamma=\frac{M v^{2}}{R T}\)
Here, \(M=4.0 \mathrm{g} \mathrm{mol}^{-1}=4.0 \times 10^{-3} \mathrm{kg} \mathrm{mol}^{-1}\)
\(v=952 \mathrm{ms}^{-1}, R=8.3 \mathrm{JK}^{-1} \mathrm{mol}^{-1}\) and \(T=273 \mathrm{K}(\mathrm{at} \mathrm{NTP})\)
\(\because \quad \gamma=\frac{\left(4.0 \times 10^{-3} \mathrm{kg} \mathrm{mol}^{-1}\right)\left(952 \mathrm{ms}^{-1}\right)^{2}}{\left(8.3 \mathrm{JK}^{-1} \mathrm{mol}^{-1}\right)(273 \mathrm{K})}=1.6\)
By definition, \(\gamma=\frac{C_{p}}{C_{v}}\) or \(C_{p}=\gamma C_{v}\)
But \(\gamma=1.6\) and \(C_{v}=5.0 \mathrm{JK}^{-1} \mathrm{mol}^{-1}\)
\(\therefore \quad C_{p}=(1.6)\left(5.0 \mathrm{JK}^{-1} \mathrm{mol}^{-1}\right)=8.0 \mathrm{JK}^{-1} \mathrm{mol}^{-1}\)
(હવામાં ધ્વનિની ઝડપ $= 340\, m/s$)
$(i)\,\,\,\,\,{y_1} = A\,\cos \,\,2\pi \,\left( {{n_1}t\, + \,\frac{x}{{{\lambda _1}}}} \right)$
$(ii)\,\,\,\,\,{y_2} = A\,\cos \,\,2\pi \,\left( {{n_1}t\, + \,\frac{x}{{{\lambda _1}}} + \pi } \right)$
$(iii)\,\,\,\,\,{y_3} = A\,\cos \,\,2\pi \,\left( {{n_2}t\, + \,\frac{x}{{{\lambda _2}}}} \right)$
$(iv)\,\,\,\,\,{y_4} = A\,\cos \,\,2\pi \,\left( {{n_2}t\, - \,\frac{x}{{{\lambda _2}}}} \right)$
આપેલ પૈકી કઈ જોડી અનુક્રમે માધ્યમમાં વિનાશી વ્યતિકારણ અને સ્થિર તરંગો દર્શાવે છે