\(\mathrm{T}^2=\frac{4 \pi^2 \mathrm{r}^3}{\mathrm{GM}}\)
\({\left[\mathrm{T}^2\right]=\frac{\left[\mathrm{L}^3\right]}{\left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right][\mathrm{M}]}}\)
(Dimension of G is \(\left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right]\) )
\(\left[\mathrm{T}^2\right]=\frac{\left[\mathrm{L}^3\right]}{\left[\mathrm{L}^3 \mathrm{~T}^{-2}\right]}=\left[\mathrm{T}^2\right]\)