Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
એક ભૌતિક રાશિ $A$ બીજા ચાર આવકલોકન $p,q,r$ અને $s$ પર $A=\frac{\sqrt{pq}}{r^2s^3}$ મુજબ આધાર રાખે છે. $p,q,r$ અને $s$ ના માપનમા પ્રતિશત ત્રુટિ અનુક્રમે $1\%,$ $3\%,\,\, 0.5\%$ અને $0.33\%$ હોય તો $A$ ના માપનમા પ્રતિશત ત્રુટિ કેટલા $\%$ હશે?
ભૌતિક રાશિ $m$ જેને $m = \pi \tan \theta $ વડે દર્શાવવામાં આવે છે તેમાં પ્રતિશત ત્રુટિ $\theta $ $=$ .......... $^o$ હોય ત્યારે ન્યૂનતમ થાય. ($\theta $ માં ત્રુટિ અચળ રહે છે)
એક ભૌતિક રાશિ $a$ એ બીજી ભૌતિક રાશિઓ $b , c , d$ અને $e$ ના સંબંધ દર્શાવતા સૂત્ર $ a ={b^\alpha }{c^\beta }/{d^\gamma }{e^\delta } $ વડે માપી શકાય છે. જો $b , c , d$ અને $e$ ના માપનમાં આવેલી મહત્તમ ત્રુટિ $ {b_1} \%, {c_1} \%, {d_1} \%$ અને $ {e_1} \%$ હોય તો સુત્ર પરથી મેળવેલ $a$ ની કિેમતમાં મહત્તમ ત્રુટિ કેટલી હોય?
સાંકડીપટ્ટીની લંબાઈ, પહોળાઈ અને જાડાઈ અનુક્રમે $(10.0 \pm 0.1)\,cm$, $(1.00 \pm 0.01)$ અને $(0.100 \pm 0.001)$ છે. કદમાં સૌથી વધુ સંભવિત ત્રુટિ કેટલી હશે ?
એક લોલકનાં ગોળાનો વ્યાસ વર્નિયર કેલિપર્સથી માપવામાં આવે છે. વર્નિયર કેલિપર્સમાં મુખ્ય માપક્રમના $9$ વિભાગ વર્નિયર માપક્રમના $10$ વિભાગને સમાન છે. મુખ્ય માપક્રમનો એક વિભાગ $1\, {mm}$ નો છે. મુખ્ય માપક્રમનું અવલોકન $10\, {mm}$ અને વર્નિયર માપક્રમનો $8$ મો કાંપો મુખ્ય માપક્રમના એક કાંપા સાથે સંપાત થાય છે. જો આપેલ વર્નિયર કેલિપર્સની ધન ત્રુટિ $0.04\, {cm}$ હોય, તો લોલકની ત્રિજ્યા $...... \,\times 10^{-2} \,{cm}$ હશે.
$s$ પૃષ્ઠતાણ હેઠળ દોલનો કરતાં અને ઘનતા $d$, ત્રિજ્યા $r$ ધરાવતા પ્રવાહીના ટીપાંના દોલનોના આવર્તકાળ $t$ ને $t = \sqrt {{r^{2b}}\,{s^c}\,{d^{a/2}}} $ સમીકરણથી દર્શાવી શકાય છે. તેવું જોવા મળે છે કે આવર્તકાળ $\sqrt {\frac{d}{s}} $ ના સમપ્રમાણમાં છે. તો $b$ નું મૂલ્ય કેટલું થાય?