\(\,{C_1}\,\, = \,\,\frac{{{ \in _0}\,{K_1}A}}{{d/3}}\,\, = \,\,3{K_1}\,\,\frac{{{ \in _0}A}}{d}\,\, = \,\,3\,\, \times \,\,3\,\, \times \,\,9\, = \,\,81\,\,pF\)
\({C_2}\,\, = \,\,\frac{{{ \in _0}{k_2}\,A}}{{2d/3}}\,\, = \,\,\frac{3}{2}\,\,{K_2}\,\,\frac{{{ \in _0}A}}{d}\,\, = \,\,\frac{3}{2}\,\, \times \,\,6\,\, \times \,\,9\,\, = \,\,81\,\,pF\)
જેમ \(C_1\) અને \(C_2\) શ્રેણીમાં જોડેલ છે.
\({C_3}\,\, = \,\,\frac{{{C_1}{C_2}}}{{{C_1}\,\, + \;\,{C_2}}}\,\, = \,\,\frac{{81\,\, \times \,\,81}}{{81\,\, + \;\,81}}\,\, = \,\,\frac{{81\,\, \times \,\,81}}{{162}}\,\, = \,\,40.5\,\,pF\)