\(r=\) radius of smaller drop
Volume will remain same
\(\frac{4}{3} \pi R ^{3}=64 \times \frac{4}{3} \pi r ^{3}\)
\(R =4 r\)
\(Q =64 q ;\)
\(q\) : charge of smaller drop
\(Q\) : Charge of combined drop
\(\frac{\sigma_{\text {bigger }}}{\sigma_{\text {smaller }}}=\frac{\frac{ Q }{4 \pi R ^{2}}}{\frac{ q }{4 \pi r ^{2}}}=\frac{ Q }{ q } \cdot \frac{ r ^{2}}{ R ^{2}}\)
\(=64 \frac{ r ^{2}}{16 r ^{2}}=4\)
\(\frac{\sigma_{\text {bigger }}}{\sigma_{\text {smaller }}}=\frac{4}{1}\)