$\mathrm{R}=8.314\; \mathrm{JK}^{-1} \mathrm{mol}^{-1}$
$\mathrm{E_a}=0$
$\log \left(\frac{\mathrm{K}_{2}}{\mathrm{K}_{1}}\right)=0$
$\frac{\mathrm{K}_{2}}{\mathrm{K}_{1}}=10^{\circ}=1$
$\Rightarrow \mathrm{K}_{2}=\mathrm{K}_{1}$
$\mathrm{K}_{2}=1.6 \times 10^{6} \mathrm{s}^{-1}$ at $400 \mathrm{K}$
${I_2}\,\underset{{{K_{ - 1}}}}{\overset{{{K_1}}}{\longleftrightarrow}}\,2I\,$ (fast step)
$2I + {H_2}\xrightarrow{{{K_2}}}2HI$ (slow step)
તો પ્રક્રિયાનો વેગનિયમ જણાવો.