Run | $[A]/mol\,L^{-1}$ | $[B]/mol\,L^{-1}$ | $D$ ઉત્પન્ન થવાનો શરૂઆતનો દર $mol\,L^{-1}\,min^{-1}$ |
$I.$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$II.$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$III.$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$IV.$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
ઉપરની વિગત પરથી નીચેનામાંથી ક્યું સાચુ છે ?
and with respect to \(\mathrm{B}\) is \(y\).
Thus,
rate \(=\mathrm{k}[A]^{x}[B]^{y}\)
(\(x\) and \(y\) are stoichiometric coefficient)
For the given cases,
\(I\). rate \(=\mathrm{k}(0.1)^{x}(0.1)^{y}=6.0 \times 10^{-3}\)
\(II\). rate \(=\mathrm{k}(0.3)^{x}(0.2)^{y}=7.2 \times 10^{-2}\)
\(III\). rate \(=\mathrm{k}(0.3)^{x}(0.40)^{y}=2.88 \times 10^{-1}\)
\(IV\). rate \(=\mathrm{k}(0.34)^{x}(0.1)^{y}=2.40 \times 10^{-2}\)
Dividing Eq. \((I)\) by Eq. \((IV)\), we get
\(\left(\frac{0.1}{0.4}\right)^{x}\left(\frac{0.1}{0.1}\right)^{y}\)
\(\frac{6.0 \times 10^{-3}}{2.4 \times 10^{-2}}\)
\(\left(\frac{1}{4}\right)^{x} =\left(\frac{1}{4}\right)^{1}\)
\(\therefore x=1\)
On dividing Eq. \((II)\) by Eq. \((III)\), we get
\(\left(\frac{0.3}{0.3}\right)^{x}\left(\frac{0.2}{0.4}\right)^{y}=\frac{7.2 \times 10^{-2}}{2.88 \times 10^{-1}}\)
\(\left(\frac{1}{2}\right)^{y}=\frac{1}{4}\)
\(\left(\frac{1}{2}\right)^{y}=\left(\frac{1}{2}\right)^{2}\)
\(\therefore y=2\)
Thus, rate law is,
\(\text {rate} =k[A]^{1}[B]^{2}\)
\(=k[A][B]^{2}\)
$NO_{(g)} + Br_{2 (g)} $ $\rightleftharpoons$ $ NOBr_{2 (g)} , NOBr_{2 (g)} + NO_{(g)}\rightarrow 2 NOBr_{(g)}$ જો બીજી પ્રક્રિયાએ વેગનિર્ણાયક તબક્કો હોય તો પ્રક્રિયાનો ક્રમ $NO_{(g)} $ ના સંદર્ભમાં........ હશે.