$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$23 \mathrm\ {sec}$ પછી જો વાયુઆનું કુલ દબાણ $200\ torr$ મળી આવેલ હોય અને ખુબજ લાંબા સમય બાદ $A$ નાં સંપૂર્ણ વિધટન પર $300\ torr$ મળી આવેલ હોય તો આપેલ પ્રક્રિયા નો વેગ અચળાંક ......... $\times 10^{-2} \mathrm{~s}^{-1}$ છે. [આપેલ : $\left.\log _{10}(2)=0.301\right]$
\(\mathrm{P}_{23}=\mathrm{P}_0+2 \mathrm{x}=200\)
\(\mathrm{P}_{\infty}=3 \mathrm{P}_0=300\)
\(\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})\)
\(\mathrm{P}_{23}=\mathrm{P}_0+2 \mathrm{x}=200\)
\(\mathrm{P}_{\infty}=3 \mathrm{P}_0=300\)
\(\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})\)
\(\mathrm{P}_{23}=\mathrm{P}_0+2 \mathrm{x}=200\)
\(\mathrm{P}_{\infty}=3 \mathrm{P}_0=300\)
\(\mathrm{P}_0=100\)
\(\mathrm{~K}=\frac{1}{\mathrm{t}} \ln \frac{\mathrm{P}_{\infty}-\mathrm{P}_0}{\mathrm{P}_{\infty}-\mathrm{P}_{\mathrm{t}}}\)
\(\mathrm{K}=\frac{2.3}{23} \log \frac{300-100}{300-200}\)
\(=\frac{2.3 \times 0.301}{23}=0.0301=3.01 \times 10^{-2} \mathrm{sec}^{-1}\)
\(\mathrm{P}_0=100\)
\(\mathrm{~K}=\frac{1}{\mathrm{t}} \ln \frac{\mathrm{P}_{\infty}-\mathrm{P}_0}{\mathrm{P}_{\infty}-\mathrm{P}_{\mathrm{t}}}\)
\(\mathrm{K}=\frac{2.3}{23} \log \frac{300-100}{300-200}\)
\(=\frac{2.3 \times 0.301}{23}=0.0301=3.01 \times 10^{-2} \mathrm{sec}^{-1}\)
\(\mathrm{P}_0=100\)
\(\mathrm{~K}=\frac{1}{\mathrm{t}} \ln \frac{\mathrm{P}_{\infty}-\mathrm{P}_0}{\mathrm{P}_{\infty}-\mathrm{P}_{\mathrm{t}}}\)
\(\mathrm{K}=\frac{2.3}{23} \log \frac{300-100}{300-200}\)
\(=\frac{2.3 \times 0.301}{23}=0.0301=3.01 \times 10^{-2} \mathrm{sec}^{-1}\)
ખોટું વિધાન ઓળખો.